
POD-QUERY: Schema Mapping and Query Rewriting
for Solid Pods
Maarten Vandenbrande1,†, Maxime Jakubowski2,†, Pieter Bonte1,4, Bart Buelens3,
Femke Ongenae1 and Jan Van den Bussche2

1IDLab, Ghent University – imec, Belgium
2Data Science Institute, Hasselt University, Belgium
3Flemish Institute for Technological Research (VITO), Belgium
4Departement of Computer Science, KU Leuven Kulak, Belgium

Abstract
We envisage a decentralized Web architecture in which access to data in Solid pods is mediated by Web
agents. Leveraging methods from information integration and data exchange, Web agents can give clients
access to views defined by schema mappings. Queries formulated by clients over the view are rewritten
by the agent to queries that work correctly over the base data. We demonstrate POD-QUERY, our
prototype implementation of such an architecture, where schema alignment is specified by RDF-to-RDF
mappings written in RML, and SPARQL queries are rewritten based on these mappings. We demonstrate
our system in a personal health scenario.

Keywords
Decentralized Web, Personal data management, Web agent, Schema alignment

1. Background

For many years there has been interest in the management of personal data in a decentralized
manner, e.g., ongoing societal movements such as MyData [https://mydata.org], and work on
personal information management systems [1]. A more recent example is the massive uptake
of Mastodon and the Fediverse [https://spectrum.ieee.org/mastodon-social-media]. Of course,
more broadly, support for federated linked data has always been a goal of the Semantic Web [2].

An instrumental advance in this direction is Solid, a Web protocol for accessing “pods”, i.e.,
personal data vaults [https://solidproject.org]. Solid essentially describes authenticated HTTP
access to linked data containers. Like the Fediverse, Solid was initially inspired by social network
applications [3], but also has a broader applicability in the decentralized Web of data. There is
ambition to become a W3C standard.

Solid pods, following the LDP protocol, serve resources structured in nested containers,
comparable to files in a UNIX directory structure. Resources can be RDF or non-RDF (i.e.,
blobs); we will focus here on resources that are RDF graphs. Clients, identified by a Web ID,
can be given access to specific resources in the pod. Access can be read or write; we will focus
here on read access. When a client is given read access to some resource, they can simply

ISWC 2023 Posters and Demos: 22nd International Semantic Web Conference, November 6–10, 2023, Athens, Greece
†
These authors contributed equally and should both be considered first author.

© 2023 Copyright c 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://mydata.org
https://spectrum.ieee.org/mastodon-social-media
https://solidproject.org
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Schematic overview of the POD-QUERY system.

download (HTTP GET) the corresponding RDF graph. For some types of applications, however,
and especially with larger graphs, we may want to allow clients to submit SPARQL queries
instead. This natural extension to Solid is being developed or supported by several servers
(Inrupt, Comunica [4]), and is adopted in our demo system (using Comunica).

2. Problem statement and approach

The problem motivating this work is that of dealing with multiple parties or clients. Assuming a
world where Solid pods are used routinely, there will be multiple parties that we are willing to
share data with, e.g., governments, health providers, recommendation services, social networks.
With each party we want to share different data, and, moreover, each party would likely prefer
to see that data according to a specific vocabulary or schema. However, the pod stores our base
data in several RDF graphs that are organized according to our own, fixed, internal schema.
Therefore, we cannot simply grant a party access to some set of graphs coming straight out of
the pod, as these will likely include data that we are not willing to share with said party, and
moreover, the data will not conform to the party’s desired schema.

Towards a solution, we propose here the POD-QUERY system. The user can specify different
views over their personal data for every requesting party. This way, the user can control exactly
what the party can query. These views can hide data as well as transform into the right shape.

3. The POD-QUERY System

POD-QUERY (Fig. 1) realizes views on Solid pods through RDF-to-RDF schema alignment
specified in RML, and rewriting SPARQL queries based on these RML mappings.

Formally, consider a pod 𝐷 owned by 𝐴, and a party 𝐵 with which 𝐴 is willing to share
some of its data. 𝐵 specifies a schema 𝑆𝐵 , stating requirements to which they expect the data
to conform. We are not fixing the schema language in this paper; the requirements can be very
loose, merely suggesting the use of certain vocabularies, or can be quite strict, taking the form
of SHACL constraints, for example. POD-QUERY consists of the following components:

View: 𝐴 defines, over the data in 𝐷, a view 𝑉𝐵 which contains the RDF graph that 𝐵 will be
allowed to read. This view conforms to 𝑆𝐵 .

Schema mapping: 𝑉𝐵 is specified as a schema mapping, from data conforming to whatever
local schema used in 𝐷, to RDF graphs conforming to 𝑆𝐵 . In our approach, we use RDF-

to-RDF mappings written in RML https://rml.io [5], but alternatives could be SPARQL
CONSTRUCT queries, or N3Logic rules.

Query rewriting: 𝐵 can simply download the view 𝑉𝐵 , which may be computed on demand
or may be materialized by 𝐴 (in which case it must also be kept up-to-date under updates
to 𝐷). However, for larger data, and frequent access, we want to make it possible for 𝐵 to
be able to pose arbitrary SPARQL queries over the view 𝑉𝐵 . If 𝑉𝐵 is materialized, these
queries can be directly answered by a SPARQL engine. Otherwise, however, the client
query 𝑄 must be rewritten into an equivalent query 𝑄′ that works over the local schema.

Web agent, mediator: Keeps track of which views are used for which parties, executes or
materializes the schema mappings, and applies query rewriting. This agent has full access
to 𝐷, but may appear to 𝐵 as a virtual Solid pod; the view 𝑉𝐵 is then a resource to which
𝐵 is granted access.

Each schema mapping is based on a SPARQL query that can be executed over a pod to result
in a set of variable bindings. Each binding gives rise to generated triples, which can involve
newly created IRIs through IRI templates [6]. Our system POD-QUERY generates, from any
input RML mapping document 𝑉 and any input client SPARQL query 𝑄, a SPARQL query 𝑄′

such that 𝑄′(𝐷) = 𝑄(𝑉 (𝐷)), for every pod dataset 𝐷.
An example of rewriting is given in Figure 2. Our SPARQL–RML Rewriter software is

publicly available as an independent module https://github.com/MaximeJakubowski/SRR. The
consolidated POD-QUERY system software is available as well https://github.com/maartyman/
solid-aggregator-server/tree/query-rewriting, https://github.com/maartyman/solid-agent.

4. The demo

Video: https://vimeo.com/846598633, Online: https://podquery-demo.vito.be
We focus on a personal health data sharing scenario, inspired by the We Are platform in

Flanders [https://we-are-health.be]. Citizens are asked to fill a health questionnaire known as
GGDM. As this pertains personal information, answers to the questions are stored in their pod
using a designed GGDM vocabulary. Now assume a regional research survey (RRS) which asks
people access to their GGDM data in order to study diabetes. Alice is willing to participate,
but only wants to share selected info. Moreover, for her diabetes status, she refers to her
health record, which was directly filled in her pod at the hospital. This record using the FHIR
vocabulary [7], however. Thus, Alice instructs her Web agent to invoke two schema mappings
defining her view for RRS: (1) directly retrieve only selected GGDM answers; and (2) transform
my diabetes status from FHIR to GGDM.

Now RRS, contacting Alice’s Web agent, may come with a query to retrieve all available
GGDM answers, on condition that her diabetes status is positive. POD-QUERY will automatically
rewrite this query correctly, checking diabetes status in FHIR and returning only the answers
(e.g., eating habits and exercising) that Alice instructed to share. For another example, RRS may
ask how many GGDM answers Alice makes available. In general, arbitrary client queries can be
posed, but will be rewritten to answer only what Alice makes available, possibly from diverse
sources.

https://rml.io
https://github.com/MaximeJakubowski/SRR
https://github.com/maartyman/solid-aggregator-server/tree/query-rewriting
https://github.com/maartyman/solid-aggregator-server/tree/query-rewriting
https://github.com/maartyman/solid-agent
https://vimeo.com/846598633
https://podquery-demo.vito.be
https://we-are-health.be

Schema mapping in RML
:answerSource a rml:LogicalSource ;
rml:source :sparqlService ;
rml:referenceFormulation ql:JSONPath ;
rml:iterator "$.results.bindings[*]" ;
rml:query
"""
SELECT ?question ?completedQuestion
?answer ?date ?person ?session
WHERE { ?session
prov:atTime ?date ;
prov:wasAssociatedWith ?person .
?completedQuestion
sur:answeredIn ?session ;
sur:hasAnswer ?answer ;
sur:completesQuestion ?question .
FILTER (?question IN (ggdm:question1,
ggdm:question2,ggdm:question3,
ggdm:question4,ggdm:question5,
ggdm:question6,ggdm:question6-1,
ggdm:question6-2,ggdm:question7,
ggdm:question7-1,ggdm:question7-2,
ggdm:question7-3,ggdm:question7-4,
ggdm:question7-5,ggdm:question7-6,
ggdm:question7-7,ggdm:question7-8,
ggdm:question7-9,ggdm:question7-10,
ggdm:question8-1,ggdm:question9-1,
ggdm:question10,ggdm:question11,
ggdm:question12,ggdm:question13,
ggdm:question14)) }
""" .

:completedQuestionTriplesMap
a rr:TriplesMap ;
rml:logicalSource :answerSource ;
rr:subjectMap [
rml:reference
"completedQuestion.value" ;

rr:termType rr:IRI] ;
rr:predicateObjectMap [
rr:predicate sur:answeredIn ;
rr:objectMap [
rml:reference "session.value" ;
rr:termType rr:IRI]] ;

rr:predicateObjectMap [
rr:predicate sur:hasAnswer ;
rr:objectMap [
rml:reference "answer.value" ;
rr:termType rr:IRI]] ;

rr:predicateObjectMap [
rr:predicate sur:completesQuestion ;
rr:objectMap [
rml:reference "question.value" ;
rr:termType rr:IRI]] .

:sessionTriplesMap a rr:TriplesMap ;
rml:logicalSource :answerSource ;
rr:subjectMap [
rml:reference "session.value" ;
rr:termType rr:IRI] ;
rr:predicateObjectMap [
rr:predicate prov:atTime ;
rr:objectMap [
rml:reference "date.value" ;
rr:datatype xsd:date]] ;

rr:predicateObjectMap [
rr:predicate prov:wasAssociatedWith ;
rr:objectMap [
rml:reference "person.value" ;
rr:termType rr:IRI]] .

#
Client query in SPARQL
How many GGDM questions are available?
#
SELECT (
COUNT(DISTINCT ?completedQuestion))
WHERE {
?completedQuestion sur:answeredIn ?session
}
#
Rewritten query
#
SELECT (
COUNT(DISTINCT ?completedQuestion))
WHERE {
{SELECT ?rvar28 ?rvar24 ?rvar29

?rvar27 ?rvar25 ?rvar26
WHERE {
?rvar26 prov:atTime ?rvar27 ;
prov:wasAssociatedWith ?rvar25 .
?rvar24 sur:answeredIn ?rvar26 ;
sur:hasAnswer ?rvar29 ;
sur:completesQuestion ?rvar28
FILTER (?rvar28 IN (ggdm:question1,
ggdm:question2,ggdm:question3,
ggdm:question4,ggdm:question5,
ggdm:question6,ggdm:question6-1,
ggdm:question6-2,ggdm:question7,
ggdm:question7-1,ggdm:question7-2,
ggdm:question7-3,ggdm:question7-4,
ggdm:question7-5,ggdm:question7-6,
ggdm:question7-7,ggdm:question7-8,
ggdm:question7-9,ggdm:question7-10,
ggdm:question8-1,ggdm:question9-1,
ggdm:question10,ggdm:question11,
ggdm:question12,ggdm:question13,
ggdm:question14)) } }

BIND(?rvar26 AS ?session)
BIND(?rvar24 AS ?completedQuestion)
}

Figure 2: Example of query rewriting. Prefix definitions in RML and SPARQL have been omitted.

5. Related work, concluding remarks

The application of views is, of course, very familiar from database systems. Furthermore,
techniques for schema mapping and query rewriting have been developed in information
integration and data exchange [8, 9]. For example, the successful Ontop system applies SPARQL-
to-SQL rewriting [6].

Several researchers have explored the use of views and query rewriting for privacy [10, 11, 12].
The utility of expressive views as a bridge from the local vocabulary of pod data to client
vocabularies was also pointed out by Arndt and Van Woensel [13], but query rewriting was not
considered.

The novelty of our work lies in showing the applicability of these techniques and adapting
them to the new Solid pod context. Furthermore, our use of RML to specify RDF-to-RDF

mappings is new, as is our SPARQL-to-SPARQL rewriting algorithm. Our algorithm (details to
be published separately) involves an optimization technique that checks satisfiability on sets of
equalities coming from matched triple patterns in the BGP against the RML mapping heads.

The design of interfaces for configuring the schema mappings in Web agents is an important
direction for future research.

Acknowledgments

This work was supported by the Flanders AI Research Program, and also partly funded by the
SolidLab Vlaanderen project (Flemish Government, EWI and RRF project VV023/10) and the
FWO Project FRACTION (Nr. G086822N). We are indebted to Thomas Delva for his contributions
to an earlier stage of this work, and to Bart Bogaerts, Anastasia Dimou, and Ruben Verborgh
for inspiring discussions.

References

[1] S. Abiteboul, B. André, D. Kaplan, Managing your digital life, CACM 59 (2015) 32–35.
[2] P. Hitzler, A review of the Semantic Web field, CACM 64 (2021) 76–83.
[3] E. Mansour, A. Sambra, et al., A demonstration of the Solid platform for social web

applications, in: 25th WWW Companion, 2016, pp. 223–226.
[4] R. Taelman, J. Van Herwegen, M. Vander Sande, R. Verborgh, Comunica: A modular

SPARQL query engine for the Web, ISWC, 2018, pp. 239–255.
[5] A. Dimou, M. Vander Sande, et al., RML: A generic language for integrated RDF mappings

of heterogeneous data, LDOW, 2014.
[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-

Muro, G. Xiao, Ontop: Answering SPARQL queries over relational databases, Semantic
Web 8 (2017) 471–487.

[7] D. Bender, K. Sartipi, HL7 FHIR: An agile and RESTful approach to healthcare information
exchange, CBMS, 2013, pp. 326–331.

[8] A. Doan, A. Halevy, Z. Ives, Principles of Data Integration, Morgan Kaufmann, 2012.
[9] M. Arenas, P. Barceló, L. Libkin, F. Murlak, Foundations of Data Exchange, Cambridge

University Press, 2014.
[10] A. Bonifati, U. Comignani, E. Tsamoura, Exchanging data under policy views, EDBT, 2021.
[11] S. Oulmakhzoune et al., Privacy query rewriting algorithm instrumented by a privacy-

aware access control model, Ann. des Télécommunications 69 (2014) 3–19.
[12] M. Goncalves, M. Vidal, K. M. Endris, PURE: A privacy aware rule-based framework over

knowledge graphs, DEXA, 2019, pp. 205–214.
[13] D. Arndt, W. Van Woensel, Decentralization rules: Linking Solid pods in different vo-

cabularies using N3, First DKG Workshop, 2022. https://paul.ti.rw.fau.de/~ec69etyl/2022/
dkg-22/DKG-22_paper_7.pdf.

https://paul.ti.rw.fau.de/~ec69etyl/2022/dkg-22/DKG-22_paper_7.pdf
https://paul.ti.rw.fau.de/~ec69etyl/2022/dkg-22/DKG-22_paper_7.pdf

	1 Background
	2 Problem statement and approach
	3 The POD-QUERY System
	4 The demo
	5 Related work, concluding remarks

